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Data Modelling

I From Data to a Model

↓
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Data Modelling

I Models are descriptions of the data
I They encode our assumptions about the data
I Enabling us to:

I compare and contrast methods
I quantify performance

I A model is ‘more than’ the data — it should be a ‘generalisation’ of the
data
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Data Modelling

e.g. build a model of Messi as he rolls the ball across the pitch

Data: collect data of body joints during action from multiple examples
Model: ?

Rui Ponte Costa & Dima Damen
rui.costa@bristol.ac.uk

COMS21202: Deterministic models

http://www.youtube.com/watch?v=V4m-qZl0Yqw&t=3m0s


Data Modelling

I No need to play God
I Models do not have to exactly describe the ‘real world’, nor exactly

model how data was generated (e.g. the full human body)
I Instead, a model is an abstraction of reality – only approximates the

underlying physical process (e.g. only joints)
I Models only need to enable us to define a method for a given task
I Performance of the method then depends on how well the model

‘maps’ the data onto the required solution
I Which model to use? Depends on its practicality as well as our

assumptions about the data
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Fish Again,

I When classifying, we wish to find a model that can "understand" the
difference between two classes by maximising their discrimination

I Model selected here is a linear classifier
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Model Parameters

I Models are defined in terms of parameters (one or more)
I These may be empirically obtained e.g. by trial and error
I or from training data by tuning or training the model

one parameter needed x = t two parameters needed
y = mx + c
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Generalisation vs. Overfitting

I Generalisation is the probably the most fundamental concept in
machine learning.

I We do not really care about performance on training data - we already
know the answer

I We care about whether we can take a decision on new/unseen data
(i.e. outside the training data)

I A good performance on training data is only a means to an end, not a
goal in itself

I In fact trying too hard on training data leads to a damaging
phenomenon called overfitting
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Generalisation vs. Overfitting

Example

Imagine you are trying to prepare for Symbols, Patterns and Signals exam
this June. You have access to previous exam papers and their worked
answers available online. You begin by trying to answer the previous
papers and comparing your answers with the model answers provided.
Next, you get carried away and spend all your time on memorising the
model answers to all past papers. Now if the upcoming exam completely
consists of past questions, you are certainly to do well. But if the new
exam asks different questions, you would be ill-prepared. In this case, you
are overfitting the past exam papers and the knowledge you gained did not
generalise to future exam questions.

source: Flach (2012), Machine Learning
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Generalisation vs. Overfitting

I Which model is more likely to overfit the data?
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Generalisation vs. Overfitting

I Simpler models often give good performance and can be more
general

I highly complex models over-fit the training data

two parameters needed
y = mx + c

A large number of parameters
needs to be tuned
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Deterministic Models

I Deterministic models produce an output without a confidence
measure

I e.g. For the fishy model, prediction of whether the fish is salmon or
sea bass is given, without an estimate of how good the prediction is

I Deterministic models do not encode the uncertainty in the data
I This is in contrast to probabilistic models (next lecture)
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Deterministic Models

To build a deterministic model,
1. Understand the task
2. Hypothesise the model’s type
3. Hypothesise the model’s complexity
4. Tune/Train the model’s parameters
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Another Fish Problem: regression

I Goal: Finding a relationship between two variables (e.g. regress
weight against length).

I Model: Linear relationship between weight and length?
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Another Fish Problem: regression

Data: a set of data points D = {(x1, y1), (x2, y2), · · · , (xN , yN)} where xi is
the length of fish i and yi is the weight of fish i .

Task: build a model that can predict the weight of a fish from its length

Model Type: assume there exists a polynomial relationship between
length and weight

Model Complexity: assume the relationship is linear
weight = a + b ∗ length

yi = a + bxi (1)

Model Parameters: model has two parameters a and b which should be
estimated.
I a is the y-intercept
I b is the slope of the line
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Determinist Model - Line Fitting

I Finding the linear model parameters amounts to finding the best fitting
line given the data

I criterion: The best fitting line is that which minimises a distance
measure from the points to the line
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Determinist Model - Line Fitting
I Find a and b which minimises

R(a,b) =
N∑

i=1

(yi − (a + bxi ))2

I This is known as the residual/error1

I A method which gives a closed form solution is to minimise the sum of
squared vertical offsets of the points from the line, Method of
Least-Squares

1Identical to the Euclidean (or L2 norm) distance we discussed in the last lecture.
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Least Squares Solution
Example

The Ceres Orbit of Gauss:
On Jan 1, 1801, the Italian astronomer G. Piazzi discov-
ered the asteroid Ceres. He was able to track the asteroid
for six weeks but it was lost due to interference caused
by the sun. A number of leading astronomers published
papers predicting the orbit of the asteroid. Gauss also
published a forecast, but his predicted orbit differed con-
siderably from the others. Ceres was relocated by one ob-
server on Dec 7 1801 and by another on Jan 1, 1802. In
both cases the position was very close to that predicted
by Gauss. Needless to say Gauss won instant fame in
astronomical circles and for a time was more well known
as an astronomer than as a mathematician. One of the
keys to Gauss’s success was his use of the method of least
squares.

source: Leon (1994). Linear Algebra and its Applications
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Least Squares Solution
Minimise residual by taking the partial derivatives w.r.t. the parameters
(a,b), and setting them to zero (using chain rule) 2

R(a, b) =
∑

i

(yi − (a + bxi))
2

∂R
∂a

= −2
∑

i

(yi − (a + bxi)) = 0

∂R
∂b

= −2
∑

i

xi(yi − (a + bxi)) = 0

Least Squares solution :

aLS = ȳ − bLS x̄

bLS =

∑
i xiyi − Nx̄ȳ∑
i x2

i − Nx̄2

x̄ ≡ mean of {xi}
2Full derivation here
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Least Squares Solution Example

Example

Find the best least squares fit by a linear function to the data

x -1 0 1 2
y 0 1 3 9

x̄ = 0.5, ȳ = 3.25

bLS =
∑

i xi yi−Nx̄ȳ∑
i x2

i −Nx̄2 = 21−4×0.5×3.25
6−4×0.52 = 2.9

aLS = ȳ − bLS x̄ = 3.25− 0.5bLS = 1.8

y = 1.8 + 2.9x
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Least Squares Solution - Outliers

I Outliers can have disproportionate effects on parameter estimates
when using least squares

I Because residual is defined in terms of squared differences
I ‘Best line’ moves closer to outliers (Lab - week 15)
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Least Squares Solution - matrix form

I Least squared solution can be defined using matrices and vectors
I Easier when dealing with variables

R(a,b) =
∑

i

(yi − (a + bxi ))2 = ‖y− Xa‖2

where y =

y1
...

yN

, X =

1 x1
...

...
1 xN

, a =

[
a
b

]

y− Xa =

 y1 − a− bx1
...

yN − a− bxN
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Least Squares Solution - matrix form
I To solve least squares in matrix form, find aLS; 3

‖y− X aLS‖2 = 0 (minimise vector’s length)
y− X aLS = 0 (optimal vector is of length 0)
X aLS = y (re-arrange)

XT X aLS = XT y (to get a square matrix)

aLS = (XT X)−1 XT y (matrix inverse)

aLS = (XT X)−1 XT y

WARNING: This is not a derivation! It merely intends to give you
intuition of the solution. For accurate understanding please refer to:
this derivation - p8

3‖A‖2 =
√∑∑

|aij |2 denotes the Frobenius norm, defined as the square root of the sum
of the absolute squares of its elements.
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Least Squares Solution Example - again

Example

Find the best least squares fit by a linear function to the data

x -1 0 1 2
y 0 1 3 9

y =


0
1
3
9

 X =


1 −1
1 0
1 1
1 2

 XT X =

[
1 1 1 1
−1 0 1 2

]
1 −1
1 0
1 1
1 2

 =

[
4 2
2 6

]

aLS = (XT X)−1XT y = 1
20

[
6 −2
−2 4

] [
1 1 1 1
−1 0 1 2

] 
0
1
3
9

 =

[
1.8
2.9

]
y = 1.8 + 2.9x
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K-D Least Squares - matrix form

I Matrix formulation allows least squares method to be easily extended
to data points in higher (K) dimensions

I Consider set of points D = {(x1, y1), (x2, y2), · · · , (xN , yN)} where xi
has K dimensions

I For a model where yi is linearly related to xi

yi = a0 + a1xi1 + a2xi2 + · · ·+ aK xiK (2)
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K-D Least Squares - matrix form

I Solved in the same manner

y(N×1) =

y1
...

yN

 , X(N×(K +1)) =

1 x11 · · · x1K
...

...
...

...
1 xN1 · · · xNK

 , a((K +1)×1) =


a0
a1
...

aK


R(a) = ‖y− Xa‖2

aLS = (XT X)−1 XT y

where (XT X) is a (K + 1)× (K + 1) square matrix
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General Least Squares - matrix form

I Matrix formulation also allows least squares method to be extended to
polynomial fitting

I For a polynomial of degree p + 1

yi = a0 + a1xi + a2x2
i + · · ·+ ap xp

i
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General Least Squares - matrix form

I Solved in the same manner

y(N×1) =

y1
...

yN

, X(N×(p+1)) =


1 x1 x2

1 · · · xp
1

1 x2 x2
2 · · · xp

2
...

...
...

...
...

1 xN x2
N · · · xp

N

, a((p+1)×1) =


a0
a1
...

ap


aLS = (XT X)−1 XT y

where (XT X) is a (p + 1)× (p + 1) square matrix
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Generalisation and Overfitting - again

Data

p = 3
Residual = 3.5744

p = 1
Residual = 4.7557

p = 4
Residual = 3.4236

p = 2
Residual = 3.7405

p = 5
Residual = 3.4217
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Generalisation and Overfitting - again

I Strong effect on how to generalise to future data
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Tasks

I Next Lab (Week 14): Introduction to Jupyter Notebook II
I Sheet on unit webpage

I Next Problem Class (Wed 9-10): Outliers and least squares
I Prepare your answers in advance [available unit webpage]
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Further Reading

I Linear Algebra and its applications
Lay (2012)
I Section 6.5
I Section 6.6
I Available online

http://www.math.usu.edu/powell/pseudoinverses.pdf
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