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Agenda

Today we are going to talk about
1. Data acquisition
2. Data characteristics: distance measures
3. Data characteristics: summary statistics [reminder]
4. Data normalisation and outliers
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Data Acquisition - Analogue to Digital Conversion

Analogue to Digital conversion involves
1. Sampling
2. Quantisation

e.g. Audio Signal - 1D [low zoom]
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Data Acquisition - Analogue to Digital Conversion
Analogue to Digital conversion involves

1. Sampling
2. Quantisation

e.g. Audio Signal - 1D [medium zoom]
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Data Acquisition - Analogue to Digital Conversion
Analogue to Digital conversion involves

1. Sampling
2. Quantisation

e.g. Audio Signal - 1D [high zoom] : How do you represent data digitally?
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Data Acquisition - Analogue to Digital Conversion
You need to:

1. Sample
2. Quantise

example from dsp-nbsphinx.readthedocs.io (chapter 5.1)
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Data Acquisition - Analogue to Digital Conversion

Theorem
Nyquist-Shannon sampling theorem:
If a function x(t) contains no frequencies higher than fmax hertz, it is
completely determined by giving its ordinates at a series of points spaced

1
2fmax

seconds apart.

In other words,
I Suppose the highest frequency for a given analog signal is fmax ,
I According to the Theorem:

sampling period, Ts ≤ 1
2fmax

which is equivalent to sampling rate, fs ≥ 2fmax
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Data Acquisition - Analogue to Digital Conversion

Examples of sampling and quantisation of standard audio formats
I Speech (e.g. phone call)

I Sampling: 8 KHz samples
I Quantisation: 8 bits / sample

I Audio CD
I Sampling: 44 KHz samples
I Quantisation: 16 bits / sample
I Stereo (2 channels)

Note: Higher sampling/quantisation achieves better signal quality, but also
larger memory/storage.
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Data Acquisition - Analogue to Digital Conversion

Images - Multi-Dimensional
I Sampling: Resolution in digital photography
I Quantisation: Representation of each pixel in the image

I 8 Mega Pixel Camera - 3264x2448 pixels
I Quantisation 8 bits per colour
I Colour images: 3 channels: Red, Green, Blue

I Greyscale images: 1 channel: intensity = R+G+B
3

I Binary Images: Black/White 1 bit per pixel
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Agenda

Today we are going to talk about
1. Data acquisition
2. Data characteristics: distance measures
3. Data characteristics: summary statistics [reminder]
4. Data normalisation and outliers
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Distance

I Distance is measure of separation between data.
I Can be defined between single-dimensional data, multi-dimensional

data or data sequences.
I Distance is important as it:

I enables data to be ordered
I allows numeric calculations
I enables calculating similarity and dissimilarity

I Without defining a distance measure, almost all statistical and
machine learning algorithms will not be able to function.
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Distance

A valid distance measure D(a,b) between two components a and b has
the following properties
I non-negative: D(a,b) ≥ 0
I reflexive: D(a,b) = 0 ⇐⇒ a = b
I symmetric: D(a,b) = D(b,a)

I satisfies triangular inequality: D(a,b) + D(b, c) ≥ D(a, c)
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Distance (Numerical)

Distances between numerical data points in Euclidean space Rn, for a
point x = (x1, x2, .., xn) and a point y = (y1, y2, .., yn), the Minkowski
distance of order p (p-norm distance) is defined as:

D(x , y) = (
n∑

i=1

|xi − yi |p)
1
p
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Distance (Numerical)
Distances between numerical data points in Euclidean space Rn, for a
point x = (x1, x2, .., xn) and a point y = (y1, y2, .., yn), the Minkowski
distance of order p (p-norm distance) is defined as:

D(x , y) = (
n∑

i=1

|xi − yi |p)
1
p

I p = 1
I 1-norm distance (L1)
I Also known as Manhattan Distance
I

D(x , y) =
n∑

i=1

|xi − yi |
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Distance (Numerical)
Distances between numerical data points in Euclidean space Rn, for a
point x = (x1, x2, .., xn) and a point y = (y1, y2, .., yn), the Minkowski
distance of order p (p-norm distance) is defined as:

D(x , y) = (
n∑

i=1

|xi − yi |p)
1
p

I p = 2
I 2-norm distance (L2)
I Also known as Euclidean Distance
I Can be expressed in vector form

D(x , y) =

√√√√ n∑
i=1

(xi − yi )2

= ‖x− y‖

=
√

(x− y)T (x− y) (1)
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Distance (Numerical)
Distances between numerical data points in Euclidean space Rn, for a
point x = (x1, x2, .., xn) and a point y = (y1, y2, .., yn), the Minkowski
distance of order p (p-norm distance) is defined as:

D(x , y) = (
n∑

i=1

|xi − yi |p)
1
p

I p =∞
I ∞-norm distance (L∞)
I Also known as Chebyshev distance

D(x , y) = lim
p→∞

n∑
i=1

(|xi − yi |p)
1
p

= max(|x1 − y1|, |x2 − y2|, .., |xn − yn|)
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Distance (Numerical Time Series)

I Time Series: successive measurements made over a time interval
I Assume you recorded an audio signal of two people saying the same

word w
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Distance (Numerical Time Series)

P-Norm distances can only
I Compare time series of the same length
I very sensitive to signal transformations:

I shifting
I uniform amplitude scaling
I non-uniform amplitude scaling
I uniform time scaling
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Distance (Numerical Time Series)

Adv. distance: Dynamic Time Warping (Berndt and Clifford, 1994)
I Replaces Euclidean one-to-one comparison with many-to-one
I Recognises similar shapes even in the presence of shifting and/or

scaling

I Dynamic Time Warping (DTW) can be defined recursively as
For two time series X = (x0, .., xn) and Y = (y0, .., ym)

DTW (X,Y) = D(x0, y0)+min{DTW (X,REST (Y)),DTW (REST (X),Y),DTW (REST (X),REST (Y))}

where REST (X) = (x1, .., xn)
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Distance (Numerical Time Series)

Adv. distance: Dynamic Time Warping (Berndt and Clifford, 1994)
I Can be used for aligning sequences

Rui Ponte Costa & Dima Damen
rui.costa@bristol.ac.uk

COMS21202: Data Acquisition



Distance (Symbolic)

I Distance is not always between numerical data
I Distance between symbolic data is less well-defined, but gaining

interest (e.g. text data)
I Distance in text could be:

I syntactic
I semantic
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Distance (Symbolic)

Syntactic - e.g. Hamming Distance
I Defined over symbolic data of the same length
I Measures the number of substitutions required to change one

string/number into another
I e.g.

I B r i s t o l
B u r t t o n D(‘Bristol’, ‘Burtton’) = 4

I 5 2 4 3
6 2 1 3 D(5243, 6213) = 2

I 1011101
1001001 D(1011101, 1001001) = 2

I For binary strings, hamming distance equals L1
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Distance (Symbolic)

Syntactic - e.g. Edit Distance
I Defined on text data of any length
I Measures the minimum number of ‘operations’ required to transform

one sequence of characters into another
I ‘Operations’ can be: insertion, substitution, deletion

I e.g. D(‘fish’, ‘first’) = 2

I ‘fish’ insertion−−−−−→ ‘firsh’ substitution−−−−−−→ ‘first’

I used in spelling correction, DNA string comparisons
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Distance (Symbolic)

Semantic - e.g. WUP Relatedness Measure
I Built on top of a hierarchy of word semantics
I Most commonly used is WordNet (Princeton)

http://wordnet.princeton.edu/

I WordNet contains more than 117,000 synsets (synset: set of one or
more synonyms that are interchangeable in some context)

Rui Ponte Costa & Dima Damen
rui.costa@bristol.ac.uk

COMS21202: Data Acquisition

http://wordnet.princeton.edu/


Distance (Symbolic)
Semantic - e.g. WUP Relatedness
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Distance (Symbolic)

Semantic - e.g. WUP Measure
I In WordNet, directed relationships are defined between synsets

I hyponymy (is-a relationship) e.g. furniture→ bed
I meronymy (part-of relationship) e.g. chair→ seat
I troponymy [for verb hierarchies] (specific manner) e.g. communicate→

talk→ whisper
I antonymy (strong contract) e.g. wet↔ dry
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Distance (Symbolic)

Semantic - e.g. hyponymy
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Distance (Symbolic)
Semantic - e.g. WUP Measure
I WUP Measure - Wu and Palmer Distance (1994)
I WUP finds the path length to the root node from the

least common subsumer (LCS) of the two
concepts, which is the most specific concept they
share as an ancestor. This value is scaled by the
sum of the path lengths from the individual
concepts to the root.

WUP(C1,C2) =
2 ∗ N3

N1 + N2 + 2 ∗ N3

I WUP, along with other relatedness measures can
be calculated via Java API for WordNet Searching
(JAWS)

I or online: http://ws4jdemo.appspot.com/
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Distance (Symbolic)

Semantic - e.g. WUP Measure
I HOWEVER WUP is a similarity measure, not a distance measure
I It is effectively the inverse of a distance measure, taking higher values

for similar data points.
I WUP(w1, w1) = 1
I Similarity measures can be converted to distance measures,

depending on the values they take:

DWUP = 1−WUP
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Distance - Conclusion

I Once you define a distance measure on your data, you can perform
numeric operations

I Different distance measures will enable you to use the same data for
various goals
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Questions?

I What is the Edit Distance for [Menti.com]:
D(‘horse’, ‘rose’) = 2

‘horse’ substitution−−−−−−→ ‘rorse’ deletion−−−−→ ‘rose’
D(‘AGGCTATCACCTGACC’, ‘TGGCCTATCACCTGAC’) = 3

‘AGGCTATCACCTGACC’ del−−→ ‘AGGCTATCACCTGAC’ sub−−→
‘TGGCTATCACCTGAC’ ins−→ ‘TGGCCTATCACCTGAC’

I Which are numeric distances? [Menti.com]
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Agenda

Today we are going to talk about
1. Data acquisition
2. Data characteristics: distance measures
3. Data characteristics: summary statistics [reminder]
4. Data normalisation and outliers
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Mean and Variance (Reminder)

For one-dimensional data {x1, .., xn},
Mean: [average]

µ =
1
N

∑
i

xi

Variance: [spread]

σ2 =
1

N − 1

∑
i

(xi − µ)2

Standard Deviation:

σ =

√
1

N − 1

∑
i

(xi − µ)2
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Mean and Covariance

For multi-dimensional data {x1, ..,xn} where xi is an m-dimensional vector,
Mean: calculated independently for each dimension

µ =
1
N

∑
i

xi

Variance can still be computed along each dimension

Covariance Matrix: spread and correlation

Σ =
1

N − 1

∑
i

(xi − µ)2

=
1

N − 1

∑
i

(xi − µ)T (xi − µ)

WARNING: Σ is the capital letter of σ, not the summation sign!
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Covariance Matrix

In two dimensions,

Σ =
1

N − 1

∑
i

[
(vi1 − µ1)2 (vi1 − µ1)(vi2 − µ2)

(vi1 − µ1)(vi2 − µ2) (vi2 − µ2)2

]
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Covariance Matrix

In two dimensions,

Σ =
1

N − 1

∑
i

[
(vi1 − µ1)2 (vi1 − µ1)(vi2 − µ2)

(vi1 − µ1)(vi2 − µ2) (vi2 − µ2)2

]

I In addition to the variances along each dimension, the covariance
matrix measures the correlation between components

I A positive covariance between two components means a proportional
relationship between the variables.

I A negative covariance value indicates and inverse proportional
relationship.
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Covariance Matrix
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Covariance and correlation: Demo

geogebra.org/m/wrSFAnkh
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Covariance Matrix

In three dimensions,

Σ =
1

N − 1

∑
i

 (vi1 − µ1)2 (vi1 − µ1)(vi2 − µ2) (vi1 − µ1)(vi3 − µ3)
(vi1 − µ1)(vi2 − µ2) (vi2 − µ2)2 (vi2 − µ2)(vi3 − µ3)
(vi1 − µ1)(vi3 − µ3) (vi2 − µ2)(vi3 − µ3) (vi3 − µ3)2



Covariance matrix is always
I square and symmetric
I variances on the diagonal
I covariance between each pair of dimensions is included in

non-diagonal elements
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Covariance Matrix - e.g.
For the covariance matrix,

Σ =

[
5 −2 2
−2 1 0
2 0 7

]
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Covariance Matrix: Eigen analysis

I Eigenvectors and eigenvalues define principal axes and spread of
points along directions

I Commonly used to reduce data dimensionality (e.g. Principal
component analysis [PCA])

Rui Ponte Costa & Dima Damen
rui.costa@bristol.ac.uk

COMS21202: Data Acquisition



Covariance Matrix: Eigen analysis

Definition
For a square matrix A,
if there exists a non-zero column vector v where

Av = λv

then,
v → eigenvector of matrix A
λ→ is eigenvalue of matrix A

e.g.

A =

[
0 −1
2 3

]
, v1 =

[
−1
1

]
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Covariance Matrix: Eigen analysis

I To calculate eigenvectors of a square matrix, solve |A− λI| = 0 where
I I is the identity matrix
I |A| is the determinant of the matrix

I For 2× 2 matrices, two eigenvalues are found λ1, λ2

e.g.

A− λI =

[
0 −1
2 3

]
−
[
λ 0
0 λ

]
=

[
−λ −1
2 3− λ

]
|A− λI| = λ2 − 3λ+ 2 = (λ− 1)(λ− 2)

λ1 = 1, λ2 = 2
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Covariance Matrix: Eigen analysis
I After the eigenvalues are found, the eigenvectors can be calculated

For λ1 = 1 [
0 −1
2 3

] [
v11
v12

]
=

[
v11
v12

]
(2)

I This simplified to: [
−v12

2v11 + 3v12

]
=

[
v11
v12

]
(3)

I If we set v12 = 1 then we get the eigenvector1:[
v11
v12

]
=

[
−1
1

]
(4)

I Verify that this is indeed a valid eigenvector by calculating Av = λv

1Note that there many eigenvectors that work for a particular eigenvalue, but they all have
the same direction. We could consider the eigenvector with ‖v1‖ = 1, v1 = ( 1√

2
, −1√

2
).
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Covariance Matrix: Eigen analysis

I Major axis - eigenvector corresponding to larger eigenvalue (i.e.
larger variance)

I Minor axis - eigenvector corresponding to smaller eigenvalue (i.e.
smaller variance)

I These can be represented using major and minor axes of ellipses
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Covariance Matrix: another example

I λ1 = 0.08 λ2 = 4.52 λ3 = 8.40

I v1 =

−0.42
−0.90
0.12

 v2 =

 0.71
−0.40
−0.57

 v3 =

 0.57
−0.15
0.81


I Principal/Major axis is v3 (corresponding to largest eigenvalue)
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Mean vs. Median

I An alternative to arithmetic mean is the median value
I But median is difficult to work with
I e.g. median of two sets cannot be defined in terms of the individual

medians
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Note - Sample Variance vs. Variance

Given sample {x1, x2, .., xN}

µ ≈ x̄ =
1
N

∑
i

xi (5)

σ2 ≈ s2 =
1

N − 1

∑
i

(xi − x̄)2 (6)

I These are only estimates of the ‘true’ mean and variance
I N − 1 gives unbiased estimate of the variance 2

I As N →∞
I x̄ → µ
I s2 → σ2

2This means that this variance estimator is equal to the true variance when N → ∞. More
information about this can be found here.
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Normal Distribution (Reminder)

For a normal distribution N (µ, σ2) in one dimension, the probability density
function (pdf) can be calculated as

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (7)
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Normal Distribution (Reminder)

I 68% of the sample should lies within one standard deviation of the
mean

I 95% of that area lies within two standard deviations of the mean
I 99.9% of that area lies within three standard deviations of the mean
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Normal Distribution - Multi-dimensional

For multi-dimensional normal distribution N (µ,Σ) in M dimensions, the
probability density function (pdf) can be calculated as

p(x) =
1√

(2π)M |Σ|
e−

1
2 (x−µ)T Σ−1(x−µ) (8)

WARNING: Σ is the capital letter of σ, not the summation sign!
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Agenda

Today we are going to talk about
1. Data acquisition
2. Data characteristics: distance measures
3. Data characteristics: summary statistics [reminder]
4. Data normalisation and outliers
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Data Characteristic - Data Normalisation

I Multi-dimensional data may need to be normalised before distance is
calculated 3

3note the difference in magnitude between the two dimensions below!
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Data Characteristic - Data Normalisation
I Multi-dimensional data may need to be normalised before distance is

calculated.
I Methods for normalisation:

1. Rescaling

x ′ =
x −min(x)

max(x)−min(x)

2. Standardisation (also known as
z-score)

x ′ =
x − µ

σ

3. Scaling to unit length

x ′ =
x
‖x‖
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Data Characteristic - Outliers

I Mean, variance and covariance can provide concise description of
‘average’ and ‘spread’
I but not when outliers are present in the data
I outliers: small number of points with values significantly different from

that other points
I usually due to fault in measurement
I not always easy to remove
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Problem class tomorrow!

I Problem Class Tomorrow (Thur 1-2): Data Acquisition
I Prepare your answers in advance [problem sheet on github SPS

page]
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Further Reading
I Fundamentals of Multimedia

Li and Drew (2004)
I Section 6.1 Digitization of Sound

I Applied Multivariate Statistical Analysis
Hardle and Simar (2003)
I Section 1.2
I Section 1.4
I Section 3.1
I Section 3.2

I Linear Algebra and its applications
Lay (2012)
I Section 6.5
I Section 6.6

I Advances in Data Mining Knowledge Discovery and applications
Karahoca (Ed.) (2012)
I Chapter 3. Similarity Measures and Dimensionality Reduction

Techniques for Time Series Data Mining
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