COMS21202: An Introduction to Doing Things with Data

[modified from Dima Damen lecture notes]

Rui Ponte Costa & Dima Damen

University of Bristol, Department of Computer Science Bristol BS8 1UB, UK

March 9, 2020

What is Data?

What is Data?

- Data: Symbols, Patterns and Signals
 - Numeric (measurements, finances, ...)
 - Textual (emails, Web pages, medical records, ...)
 - Visual (images, video, graphics, animations)
 - Auditory (speech, audio)
 - Signals (GPS signals, neuronal activity, ...)
 - Many others...

- This unit is about doing things with data... but not
 - storing, shuffling, searching (Data Structures and Algorithms)
 - sending (Networking)
 - compressing or encrypting (Crypto I and Crypto II)
- This unit is about:
 - extracting knowledge from data
 - generating data and making predictions
 - making decisions based on data
 - ... often referred to as: Data Science

Location-tagged payments made in the U.S. annually

87%

U.S. adults whose location is known via their mobile phone

Digital Information Created Each Year, Globally

2,000%

Expected increase in global data by 2020

Megabytes

Video and photos stored by Facebook, per user

75%

Percentage of all digital data created by consumers

Sources: IDC, Radicati Group, Facebook, TR research, Pew Internet

This Unit is an introduction to.....

sources:dmnews.com, infinitdatum.com, code-n.org

But it's not about the data, but the science

'Like' curly fries on Facebook? Then you're clever

'Like' curly fries? Then there's a good chance you've got a high IQ, according to a Cambridge University project to discover what we unwittingly reveal about ourselves on Facebook.

Curly Fries: Researchers at Cambridge's Psychometric Centre have joined forces with Microsoft to analyse more than nine million 'likes' on Facebook Photo: ALAMY

Correlation does not imply causation! telegraph.co.uk

Why is it important for Computer Science?

- Fundamental to many application areas:
 - Artificial Intelligence, Machine Learning, Deep Learning
 - Image Processing and Pattern Recognition
 - Graphics, Animation and Virtual Reality
 - Computer Vision and Robotics
 - Speech and Audio Processing.
 - ▶ With growing applications in: neuroscience, literature, agriculture, etc.
- Hence, preparation for application units in years 3 and 4.

From: Pattern Classification by Duda, Hart and Stork

Data: images of fish

Aim: distinguish between sea bass and salmon

- 1. Pre-processing [Unit Part 1]» Rui Ponte Costa
- 2. Feature Selection [Unit Part 3]» Majid Mirmehdi
- 3. Classification [Unit Part 2]» Laurence Aitchison [unit director]

Fishing for a Solution

E.g.:

- 1. Pre-processing e.g. Rotate and align, Segment fish from background
- 2. Feature Selection e.g. measure length or brightness
- 3. Classification e.g. find a threshold

Fishing for a Solution

Multiple features could be selected, resulting in a multi-dimensional feature vector.

Ex2. Speech Recognition

Data: analogue speech signals (time series numerical data)

Aim: convert audio into text

- 1. Pre-processing Digitisation
- 2. Feature Selection Wave amplitude
- 3. Inference Hidden Markov Models (Viterbi algorithm) [or Deep learning]

Ex3. Spam Filter

Data: email texts (text data)

Aim: determine whether the email is spam

Steps:

- Pre-processing Normalise words(e.g. vector encoding)
- 2. Feature Selection Presence of words
- 3. Classification Naive Bayes classifier

Select subset of words w_i and determine $P(w_i|spam)$ and $P(w_i|\neg spam)$ from frequencies in training data.

For an email that contains $w_1, w_2, ..., w_n$ of the subset of words, assume

$$P(email|spam) = P(w_1|spam)P(w_2|spam)..P(w_n|spam)$$
 (1)

and

$$P(email|\neg spam) = P(w_1|\neg spam)P(w_2|\neg spam)..P(w_n|\neg spam)$$
 (2)

Email is spam if

$$P(email|spam) > P(email|\neg spam)$$
 (3)

Ex4. Autonomous Helicopter ¹

¹Stanford University [http://heli.stanford.edu/]

Data: expert demonstration

Aim: fly an autonomous helicopter

- Pre-processing align temporal sequences
- 2. Feature Selection
- 3. Model Building

- Pre-processing align temporal sequences
- 2. Feature Selection control: acceleration, height, ...
- 3. Model Building

- Pre-processing align temporal sequences
- 2. Feature Selection control: acceleration, height, ...
- 3. Model Building autonomous controller

Ex4. A modern version (autonomous drone flying)

Skydio 2: https://youtu.be/imt2qZ7uw1s

Unit Outline

https://uob-coms21202.github.io/COMS21202.github.io/

Weeks	Monday Lecture	Wednesday Lecture	Labs	Thursday Lecture	Assessments
13	Data, Data Modelling and Estimation (I)	Data, Data Modelling and Estimation (II)	Intro to Jupiter Notebook I	Problem Class - Data Acquisition	-
14	Data Modelling and Estimation (III)	Problem Class - Deterministic Data Modelling	Intro to Jupiter Notebook II	Data, Data Modelling and Estimation (IV)	-
15	Data, Data Modelling and Estimation (V)	Problem Class - Probabilistic Data Modelling	Least Squares	Review part I	CW1 (set)
16	Classification I	Classification II	Maximum Likelihood	Clustering	-
17	Problem Class	Gaussian Mixture Methods	Fitting	Evaluation Methods	-
18	Computer Science Explore Week				-
19	Problem class	Problem Class	Classification	Review part II	-
20	<u>Features</u>	<u>Features</u>	-	<u>Features</u>	-
21	<u>Features</u>	Problem Class	-	<u>Features</u>	CW1 (deadline)
Easter Break					
22	<u>Features</u>	<u>Features</u>	-	Problem Class	CW2 (formative)
23	Review part I (Rui)	Review part II (Laurence)	-	Review Part III (Majid)	-
24	Review week				

Assessments

- CW1: One individual course work: report + code (40%) weeks 15-21 [submission in week 21]
- Discuss with others, but submissions are individual
- Assessment for course work is marked in the form of a report it's what you have understood about the data that matters
- CW2: Formative course work (i.e. not assessed)
- Exam (60%)
- Unit Averages
 - 2018/2019 Avg: 662016/2017 Avg: 602015/2016 Avg: 56

Labs

- Tuesdays 13:00 15:00 [by timetable]: Group 2
- ► Thursday 09:00 11:00 [by timetable]: Group 1
- Lab Environment [Jupyter + Python]

- Lab Work:
 - Do the labs in pairs

Labs: Important!!

- Main source of 1:1 support will be from the TAs in the labs!
- Labs are <u>essential</u> for the coursework!
- Attendance will be taken.

Tasks

- Next Lab (Week 13): Introduction to Jupyter Notebook I
- Sheet on unit web page
- ▶ Next Problem Class (Thur 1-2): Data Acquisition
- Prepare your answers in advance [available online]