COMS21202: Symbols, Patterns and Signals

2D FT and Spatial Frequency

Fourier Transform - straightforward extension to 2D.

e Images are functions of two variables = e.g. f(x,y)

e Defined in terms of spatial frequency = 2D frequency.

e Fourier Transform is particularly useful for characterising

this intensity variation across an image.

e Rate of change of intensity along each dimension.
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Examples: Spatial Frequency
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Slowly changing = low frequency Rapidly changing = high frequency
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Images are waves!”? (or intuition behind FT)

Take a single row or column of pixel from an image, and graph it

Add some regular waves to get one that is close to (or as good as) the image

VAV W B B V)
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2D Fourier Transform: Continuous Form

e The Fourier Transform of a continuous function of two
variables f(x,y) is:

co oo

F(uv) = j J f(x,y) e J2rwx+vy) gxdy
e Conversely, given F(u,v) , we can obtain f{x,y) by means
of the inverse Fourier Transform:

flx,y) = j j F(u,v) e/2m@x+vy) gydy

— 00 —O0O0

These two equations are also known as the Fourier Transform Pair.

Note, they constitute a lossless representation of data.
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2D Fourier Transform: Discrete Form

e The FT of a discrete function of two variables, f(x,y), x,y=0,1,2...,N-1, is:

N-1 N-1

1 _j2n(ux+vy)

F(u,v)zmz: zf(x,y) e N for u,v=012,... N—1.
x=0 y=0

e Conversely, given F(u,v), we can obtain f(x,y) by means of the inverse FT:

N-1 N-1
_ j2n(ux+vy) 3 B
f(x,y) F(u,v) e N for x,y =0,1,2,...,N — 1.
u=0 v=0

These two equations are also known as the Fourier Transform Pair.

Note, they constitute a lossless representation of data.
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2D Fourier Transform

e The concept of the frequency domain follows from Euler’'s
Formula: ,
—jé

e = cos0 —jsin0

e Thus each term of the Fourier Transform is composed of
the sum of all values of the function f{x,y) multiplied by
sines and cosines of various frequencies:

=2

-1

=

~1
F(u,v) =

[

2 (ux + vy)) _isin (Zn(ux + vy))]

f(x,y) [COS( N N
0 y=0

for u,,v=01,2,.... N—1.

1
N2

=
Il
<
Il

We have transformed from a time domain to a frequency domain representation.
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2D Fourier Transform

e The concept of the frequency domain follows from Euler’'s
Formula: ,
—jé

e = cos0 —jsin0

e Thus each term of the Fourier Transform is composed of
the sum of all values of the function f{x,y) multiplied by
sines and cosines of various frequencies:

when u=0,v=0 1 - 0
1 — — 2 (ux + vy) 2n(ux + vy)
F(u,v) =z flx,y) [cos( T )—jsin( N )]
x=0 y=0

for u,v=01,2,.... N—1.

We have transformed from a time domain to a frequency domain representation.
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2D Fourier Transform

e The concept of the frequency domain follows from Euler’'s
Formula: ,
—jé

e = cos0 —jsin0

e Thus each term of the Fourier Transform is composed of
the sum of all values of the function f{x,y) multiplied by
sines and cosines of various frequencies:

=2

-1

=

-1
f(x,y) The slowest varying frequency component,

1
Fluv) =13 | _
. i.e. when u=0,v=0 - average image graylevel

for u,v =0,1,

0
.., N—1.

=
Il
<
Il

[\

We have transformed from a time domain to a frequency domain representation.

COMS21202 - SPS 8



Another view: The 2D Basis Functions
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2D Fourier Transform

F(u,v) is a complex number & has
real and imaginary parts:

Magnitude or spectrum of the FT:

Phase angle or phase spectrum:

F(u,v) = R(u,v) + jl(u,v)

|F (u,v)| = R2(u, v) + I?(u, v)

I(w,v)
R(u,v)

@(u,v) =tan~

Expressing F(u,v) in polar coordinates:
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Example |I: Magnitude + Phase
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Example lll: Real + Imaginary
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Example |V: Interpreting the FS

Can we interpret what the bright
components mean?
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Scanning electron microscope image of 250
an integrated circuit
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Example V. Image AnaIyS|s
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Matlab: 2D Fourier Transform

f= imread('barbara. gif') ;, Jread in image

zZ = fftZ(dOllble(f)) ; % do fourier transform
. =

q = fftshift(z); % puts u=0,v=0 in the centre =4
©

Magq = abs(q) ’ % magnitude spectrum g..
S

Phaseq=angle (q) i % phase spectrum o

5% % % % % %6 %5594 5. 9099 0 %9 9% 9. %9 9. %6 % % % % S

% Usually for viewing purposes: ;

imagesc(log(abs(q)+1)); ﬁ

colorbar;

% % % % % %6 %5 .94 5. 949 9 0 e %9 9% 9. %9 9. %6 % 9 % %

W = ifft2(ifftshift(q)) ; % do inverse fourier transform

imagesc(w);

COMS21202 - SPS 16



Viewing Magnitude and Phase
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Importance of Phase

ifft(mag only) ifft(phase only)

. 2 i
ifft(mag(Andrew) and Phase(Peter))
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Periodic Spectrum
e Important property of the FT: Conjugate Symmetry

e The FT of a real function f(x,y) gives:

F(u,v) = F'(—u,—v) ) ()| = |F*(—u, —v)
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Before fftshift After fftshift
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Symmetry
e Important property of the FT: Conjugate Symmetry

N2 0 N/2 N IN
_N/2

' N
Representation of spectra
being easier to interpret

Single period of the spectrum
computed by a DFT
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Symmetry
e Important property of the FT: Conjugate Symmetry

e The FT of a real function f(x,y) gives:
F(u,v) = F'(—u,—v)

50 100 180

Before fftshift
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Separability

e |Important property of the FT: Separability

e |f a 2D transform is separable, the result can be found by

successive application of two 1D transforms.

N-1 N-1 .
—Jj2TTVYy

1 —j2nux 1
F(u,v)=NZF(x,v) e N  where F(x,v)=ﬁ f(x,y) e N
x=0 y=0

f(x,y) ey [(xy) wmmp [(yy)

1-D row 1-D column
transforms transforms
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Rotation

e Important property of the FT: Rotation

e Rotate the image and the Fourier space rotates.

x=1rcosf y=rsinf u=wcosgp V=wsne
f(r,0+6) F(w,p + 0y)
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Manipulating the Fourier Frequencies

Detail

Contrast
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Filtering the Fourier Frequencies

e Filtering = to manipulate the (signal/image/etc) data.

1D: G(u) = F(w)H(u) 2D: G(u,v) = F(u,v)H(u,v)

Fourier Filter Inverse

Transform = EENIRIGT NN =) o ricr jv
H(u,v) Transform
Input Qutput
image F(u,v) G(u,v) image
J(xy) g(x.y)
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Low Pass Filtering

e 1D: turning the “treble” down on audio equipment!

e 2D: smooth image

Apply to freq. domain

o8]

-

uv)

H

04|

02 |

1 r(u,v) <1
0 r(u,v) >n

r(u,v) = Ju? + v?, r, is the filter radius

H(u,v) = {
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Butterworth’s Low Pass Filter
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H(u,v) = 1T [, v) /g of order n
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Butterworth’s High Pass Filter

e 1D: turning the bass down on audio equipment!
e 2D: sharpen image

Order of n=3

Hu,v) = 15 [ro/r(u, 0)]2" of order n

COMS21202 - SPS

29



Filtering to Remove Periodic Noise

e This is a very common application of the FT.
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