COMS21202: Symbols, Patterns and Signals

2D FT and Spatial Frequency

Fourier Transform \rightarrow straightforward extension to 2D.

- Images are functions of two variables \rightarrow e.g. f(x,y)
- Defined in terms of *spatial frequency* \rightarrow 2D frequency.
- Fourier Transform is particularly useful for characterising this intensity variation across an image.
- *Rate of change of intensity* along each dimension.

Examples: Spatial Frequency

Images are waves!? (or intuition behind FT)

Take a single row or column of pixel from an image, and graph it

Add some regular waves to get one that is close to (or as good as) the image

2D Fourier Transform: Continuous Form

• The Fourier Transform of a continuous function of two variables *f*(*x*,*y*) is:

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dxdy$$

 Conversely, given F(u,v), we can obtain f(x,y) by means of the *inverse* Fourier Transform:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} dudv$$

These two equations are also known as the Fourier Transform Pair.

Note, they constitute a lossless representation of data.

2D Fourier Transform: Discrete Form

• The FT of a discrete function of two variables, f(x,y), x,y=0,1,2...,N-1, is:

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi (\frac{ux+vy}{N})} \text{ for } u,v = 0,1,2,\ldots,N-1.$$

• Conversely, given F(u,v), we can obtain f(x,y) by means of the *inverse* FT:

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) \quad e^{j2\pi(\frac{ux+vy}{N})} \text{ for } x, y = 0,1,2,\dots,N-1.$$

These two equations are also known as the Fourier Transform Pair. Note, they constitute a lossless representation of data.

 The concept of the frequency domain follows from Euler's Formula:

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

 Thus each term of the Fourier Transform is composed of the sum of *all* values of the function *f(x,y)* multiplied by sines and cosines of various frequencies:

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \left[\cos\left(\frac{2\pi(ux+vy)}{N}\right) - j \sin\left(\frac{2\pi(ux+vy)}{N}\right) \right]$$

for $u, v = 0, 1, 2, \dots, N-1$.

We have transformed from a time domain to a frequency domain representation.

 The concept of the frequency domain follows from Euler's Formula:

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

 Thus each term of the Fourier Transform is composed of the sum of *all* values of the function *f(x,y)* multiplied by sines and cosines of various frequencies:

when
$$u=0, v=0$$
 1 – **0**
 $F(u, v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \left[\cos\left(\frac{2\pi(ux+vy)}{N}\right) - j \sin\left(\frac{2\pi(ux+vy)}{N}\right) \right]$
for $u, v = 0, 1, 2, ..., N-1$.

We have transformed from a time domain to a frequency domain representation.

 The concept of the frequency domain follows from Euler's Formula:

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

 Thus each term of the Fourier Transform is composed of the sum of *all* values of the function *f(x,y)* multiplied by sines and cosines of various frequencies:

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$
 The slowest varying frequency component,
i.e. when $u=0, v=0 \rightarrow$ average image graylevel
for $u, v = 0, 1, 2, ..., N-1$.

We have transformed from a time domain to a frequency domain representation.

Another view: The 2D Basis Functions

• *F*(*u*,*v*) is a complex number & has real and imaginary parts:

$$F(u, v) = R(u, v) + jI(u, v)$$

• *Magnitude* or *spectrum* of the FT:

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

• Phase angle or phase spectrum:

$$\varphi(u,v) = \tan^{-1} \frac{I(u,v)}{R(u,v)}$$

• Expressing F(u,v) in polar coordinates:

$$F(u, v) = |F(u, v)|e^{j\varphi(u, v)}$$

Example I: Image Analysis

COMS21202 - SPS

Thresholded log of FT

Example II: Magnitude + Phase

 $\log(|F(I)|+1)$

 $\angle[\mathbf{F}(I)]$

COMS21202 - SPS

Ι

Example III: Real + Imaginary

 $\operatorname{Re}[F(I)]$

COMS21202 - SPS

Ι

Example IV: Interpreting the FS

Scanning electron microscope image of an integrated circuit

Can we interpret what the bright components mean?

Example V: Image Analysis

Matlab: 2D Fourier Transform

- f = imread('barbara.gif');
- z = fft2(double(f));
- q = fftshift(z);
- Magq = abs(q);
- Phaseq=angle(q);

- %read in image
 - % do fourier transform
 - % puts u=0,v=0 in the centre
 - % magnitude spectrum
- % phase spectrum

- % Usually for viewing purposes:
- imagesc(log(abs(q)+1));

colorbar;

w = ifft2(ifftshift(q));imagesc(w);

% do inverse fourier transform

Viewing Magnitude and Phase

Importance of Phase

ifft(mag only)

ifft(mag(Peter) and Phase(Andrew))

ifft(phase only)

ifft(mag(Andrew) and Phase(Peter))

Periodic Spectrum

- Important property of the FT: Conjugate Symmetry
- The FT of a real function f(x,y) gives:

$$F(u, v) = F^*(-u, -v)$$
 $|F(u, v)| = |F^*(-u, -v)|$

Symmetry

Important property of the FT: Conjugate Symmetry

Symmetry

- Important property of the FT: Conjugate Symmetry
- The FT of a real function f(x,y) gives:

$$F(u, v) = F^*(-u, -v)$$
 $|F(u, v)| = |F^*(-u, -v)|$

Before fftshift

Separability

- Important property of the FT: Separability
- If a 2D transform is separable, the result can be found by successive application of two 1D transforms.

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} F(x,v) \quad e^{\frac{-j2\pi ux}{N}} \text{ where } F(x,v) = \frac{1}{N} \sum_{y=0}^{N-1} f(x,y) \quad e^{\frac{-j2\pi vy}{N}}$$

$$f(x,y) \quad \longrightarrow \quad F(x,v) \quad \longrightarrow \quad F(u,v)$$

$$I-D \ row \qquad I-D \ column \\ transforms \qquad transforms$$

Rotation

- Important property of the FT: *Rotation*
- Rotate the image and the Fourier space rotates.

$$x = r \cos \theta \quad y = r \sin \theta \quad u = \omega \cos \varphi \quad v = \omega \sin \varphi$$
$$f(r, \theta + \theta_0) \quad F(\omega, \varphi + \theta_0)$$

Manipulating the Fourier Frequencies

5 %

10 %

20 %

50 %

Filtering the Fourier Frequencies

• Filtering \rightarrow to manipulate the (signal/image/etc) data.

1D:
$$G(u) = F(u)H(u)$$
 2D: $G(u, v) = F(u, v)H(u, v)$

Low Pass Filtering

- 1D: turning the "treble" down on audio equipment!
- 2D: smooth image

 $H(u,v) = \begin{cases} 1 & r(u,v) \le r_0 \\ 0 & r(u,v) > r_0 \end{cases} \qquad r(u,v) = \sqrt{u^2 + v^2}, r_0 \text{ is the filter radius}$

Butterworth's Low Pass Filter

Butterworth's High Pass Filter

- 1D: turning the bass down on audio equipment!
- 2D: sharpen image

Filtering to Remove Periodic Noise

• This is a very common application of the FT.

