COMS21202: Symbols, Patterns and Signals

Signals and Fourier Analysis
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Reminder: Even Functions have y-axis Symmetry
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So a function is even when |y = f(x) = f(—x)
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Reminder: Odd Functions have origin Symmetry

o
|
N

- 1
N
w —1
N1
o —1—
o —1
~N 1
o —1
><w

So a function is odd when [y = f(x) = —f(—x)
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Examples: odd or even?

flx)=3x*—7x*+1 Even
f(=x)=3(-0)*=7(-x)*+1=3x*-7x*+1

flx) =4x° —x Odd
f(=x) = 4(=x)% = (=x) = —4x° +x

f(x) =—-3x>—x Odd

f(=x) = =3(=x)°> — (—x) = 3x> +x

f(x) =5x*+3x*+1 Even

f(=x) =5(=x)*+3(—x)2+1=5x*+3x2+1
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Function Decomposition

Any function f{x)#0 can be expressed as the sum of
an even function f(x) and an odd function f (x).

f(x) = fe(x) + fo(x)

fo@) =51/ + ()] Even Part

1
() = 5 1) ~ (-] Odd Part
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Even Part

Odd Part
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sine function

sin 6
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sin 6 is an odd function as it is symmetric wrt
the origin. sin(6) = —sin(—6)
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cos function

cos 6
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One\p/eriod
21T —

cos 6 I1s an even function as it is symmetric
wrt to the y-axis. cos(6) = cos(—0)



Signals as Functions

Frequency - allows us to characterise signals: .
* Repeats over regular intervals with Frequency u = cycles/sec (Hz)

— Amplitude a (peak value)
— the Phase 6 (shift in degrees)

Example: sine function Wavelength or period T

f@) = asin2nut % .

,/"Iamplitude a
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Reminder: Linear Systems

e [or a linear system, output of the linear combination of many input
signals is the same linear combination of the outputs ->superposition

0.5 sec
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Sound Level (volts)

How do you interpret these musical
instrument signals?

Characteristics of sound in audio signals:

e High pitch - rapidly varying signal
e Low pitch - slowly varying signal
Sound Level vs Time Sound Level vs Time
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Frequency Analysis

Trigonometric Fourier Series: Any periodic function can be expressed
as the sum of sines and/or cosines of different frequencies, each
multiplied by a different coefficient. = Jean Baptiste Joseph Fourier (1822).

- 2TINXx . [2mnx
f(x)=Z)ancos( T )+bnsm( T )
n=

e A function with period T is represented by two infinite sequences of
coefficients. = is the no. of cycles/period.

e The sines and cosines are the Basis Functions of this representation.
a, and b, are the Fourier Coefficients.

e The sinusoids are harmonically related: each one’s frequency is an integer
multiple of the fundamental frequency of the input signal.
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Expressing a periodic function as a sum of sinusoids

WAV,
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The Trigonometric Fourier Series
once more...

A trigonometric Fourier series is an expansion of a
periodic function f{x). This expansion is in terms of an
infinite sum of sines and cosines.

= 2TTNX 2TTNX
f(x)=a0+Zancos( T ) + bnsin( )
n=1

T

cf. with slide 12 — when n=0 the sin term disappears and the cos term is 1,
so we can rewrite the equation as above.

The Fourier series allows any arbitrary periodic function to be broken into a set of
simple terms that can be solved individually, and then combined to obtain the
solution to the original problem or an approximation to it.

d is often referred to as the DC term or the average of the signal.
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Fourier Series solution

A Fourier series provides an equivalent

representation of the function:

& 2nnx . (2mnx
f(x)=a0+Zancos< 7 ) + bnsm(
n=1

The coefficients are:

+T/2

2 2mnx
a, = T J f(x) cos( T )dx
~T/2
+T/2
2 - 2mnx
b, = T J f (x) sin( T )dx
~T/2
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Example periodic function on -7/2, +7/2
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Fourier Series Example: Square Wave
® f(x)Iis a square wave

+T/2 ( -T

Z If(x)cos(2ﬂnx/T)dx f(x)=<+1 — <x<0

T
—T/2 -1 0<x<—=
0 1 +T/2 \ 2

:% j cos(27zmx /T )dx = j cos(2zmx/T)dx =0

-T/2 0

+T/2

< _[f (x)sin(27mx / T )dx Jx)

—T/2

A odd

=< nxw 0

0O #n even

@) 4 27Tx+ 4 3. an+ 4 5. an+
fx—— smT gsm - 5—nsm — Tt
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Fourier Series Example: Square Wave

e The set of Fourier-space coefficients b, contain complete
information about the function

e Although f(x) is periodic to infinity, b, is negligible beyond
a finite range

1.2

1.0 —

e Sometimes the Fourier .
representation is more % ,_
convenient to use, or 0.4
just view 02-
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Frequency Analysis

The aim of processing a signal using Fourier analysis is to
manipulate the spectrum of a signal rather than manipulating
the signal itself.

Example: simple compression

Functions that are not periodic can also be expressed as the
integral of sines and/or cosines weighted by a coefficient. In
this case we have the Fourier transform.

The Fourier transform provides a way of representing a signal
in a different space - i.e., in the frequency domain.
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Fourier Transform Applications

e Applications wide ranging and ever present in modern life:

e Telecomms/Electronics/IT - cellular phones, digital cameras,

satellites, etc.
e Entertainment - music, audio, multimedia devices

e Industry - X-ray spectrometry, Car ABS, chemical analysis, radar

design
e Medical - PET, CAT, & MRI machines
e Image and Speech analysis (voice activated “devices”, biometry, ...)

e and many other fields...
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1D Fourier Transform

e The Fourier Transform of a single variable continuous
function f(x) is:

F(u) = jf(x) e ~J2muX gy

e Conversely, given F(u), we can obtain f{x) by means of
the inverse Fourier Transform:

(00)

f(x) = fF(u) eJ2mUX gy

— 00

These two equations are also known as the Fourier Transform Pair.

Note, they constitute a lossless representation of data.
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1D Fourier Transform: Discrete Form

e The Fourier Transform of a discrete function of one
variable, f(x), x=0,1,2...,N-1 is:

N—1 —J 2 mux
F(u):%Zf(x)e N foru=0,12,..N—1.
x=0

e Conversely, given F(u) , we can obtain f{(x) by means of
the inverse Fourier Transform:

J 2 mux

f(x):NZ_iF(u) e v forx=0,1,2,.... N —1.

These two equations are also known as the Fourier Transform Pair.
Note, they constitute a lossless representation of data.
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1D Fourier Domain

e The concept of the frequency domain follows from Euler’'s

Formula: _
e 1% = cos@ —jsinb

e Thus each term of the Fourier Transform is composed of
the sum of all values of the function f{x) multiplied by
sines and cosines of various frequencies:

F(u) = m z f(x) [cos (Znux) — j sin (ZTX)]

foru=20,12,...,N — 1.

We have transformed from a time domain to a frequency domain representation.
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Example: Low and High Frequency

Characteristics of sound in audio signals.

Sound Level vs Time Sound Level vs Time
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Example: Acoustic Data Analysis

Spectrogram

-‘*!!r
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Cursor: 2| 1153 Hz, -55.73 dB IV Linear View Sear
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EFT Size: l vI IHanning 'I Reference ID dBFS  Help I
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1D Fourier Transform

F(u) is a complex number & has

real and imaginary parts:

Magnitude or spectrum of the FT:

Phase angle or phase spectrum:

Expressing F(u) in polar coordinates:

COMS21202 - SPS

F(u) = R(u) +jI(w)

IF(w)| = VR (u) + I2(w)

@(u) = tan™? 1w

R(u)

F(u) = [Fw)|e/?™
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Simple 1D example
d=a+b+c
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Frequency Spectrum

e Distribution of |F(u)| = frequency spectrum of signal.

e Slowly changing signals = spectrum concentrated

around low frequencies.

e Rapidly changing signals - spectrum concentrated

around high frequencies.
e Hence low and high frequency signals.

e Also bandlimited signals = frequency content confined

within some frequency band.
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Very Simple Application example

e Automatic speech recognition between two
speech utterances x(n)and y(n).

e Nalve approach: Problems with this approach?
x(n) = Ky(n) yet EZ0
(K being a scaling parameter)

E = z (X (Tl) T y(n))z x(n) = y(n-m),yet EZ£0
vn (m causing a delay shift)

One solution could be
Dynamic Time Warping
(recall from earlier lecture)
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Frequency domain features

e Take the Fourier transform of both utterances to get X(u)
and Y(u).

e Then consider the Euclidean distance between their
magnitude spectrums: /X(u)/and /Y(u)/

ds = ) (X = Y @))?
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Frequency domain analysis

e Still a difficult task even in the frequency domain.

v Al

a tot a dot otto
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DNA sequence FT example

e The analysis of correlations in DNA sequences is used
to identify protein coding genes in genomic DNA.

e |ocating and characterizing repeats and periodic
clusters provides certain information about the structural
and functional characteristics of the molecule.

e DNA sequences are represented by letters, A, C, G or
T, and -.

e e.g. ACAATG-GCCATAAT-ATGTGAAC--GCTCA...
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DNA sequence FT example

e Consider the periodic sequence
A--A--A--A--..... where blanks can
be filled randomly by A, C, G or T.
This shows a periodicity of 3.

e

e The spectral density of such a
sequence is significantly non-zero
only at one frequency (0.33)
which corresponds to the perfect
periodicity of base A
(1/0.333=3.0).

Power—---->

Power—---->

e Destroy the perfect repetition by
randomly replacing the A’s with all

letters... \/
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Let’s practice: DNA sequence analysis

The computation of Fourier and other linear transforms of symbolic data
is a big problem.

The simplest solution is to map each symbol to a number. The difficulty
with this approach is the dependence on the particular labeling adopted.

Consider, for example, the following symbolic periodic sequence:
s = (ATAGACATAGAC . . )).

The mapping The mapping

A->1, A->1,

T>0, === perid T2, s periog
G->0, Two G -2 3, Six
C->0, C—>4,

e This clearly shows that some of the relevant harmonic structure can
be exposed by the symbolic-to-numeric labelling.
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