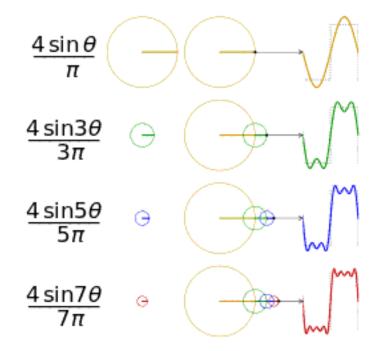
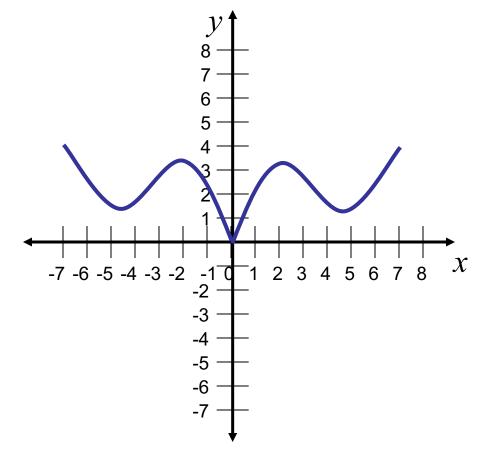
COMS21202: Symbols, Patterns and Signals

Signals and Fourier Analysis



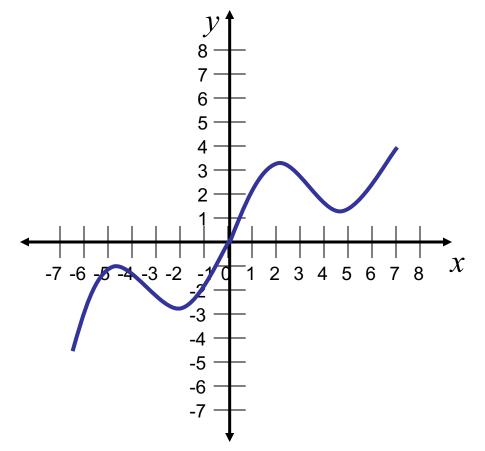
Reminder: Even Functions have y-axis Symmetry



So a function is **even** when

$$y = f(x) = f(-x)$$

Reminder: Odd Functions have origin Symmetry



So a function is odd when

$$y = f(x) = -f(-x)$$

Examples: odd or even?

$$f(x) = 3x^4 - 7x^2 + 1$$

$$f(-x) = 3(-x)^4 - 7(-x)^2 + 1 = 3x^4 - 7x^2 + 1$$

$$f(x) = 4x^3 - x$$

$$f(-x) = 4(-x)^3 - (-x) = -4x^3 + x$$

$$f(x) = -3x^5 - x$$
$$f(-x) = -3(-x)^5 - (-x) = 3x^5 + x$$

 $f(x) = 5x^4 + 3x^2 + 1$

$$f(-x) = 5(-x)^4 + 3(-x)^2 + 1 = 5x^4 + 3x^2 + 1$$

Function Decomposition

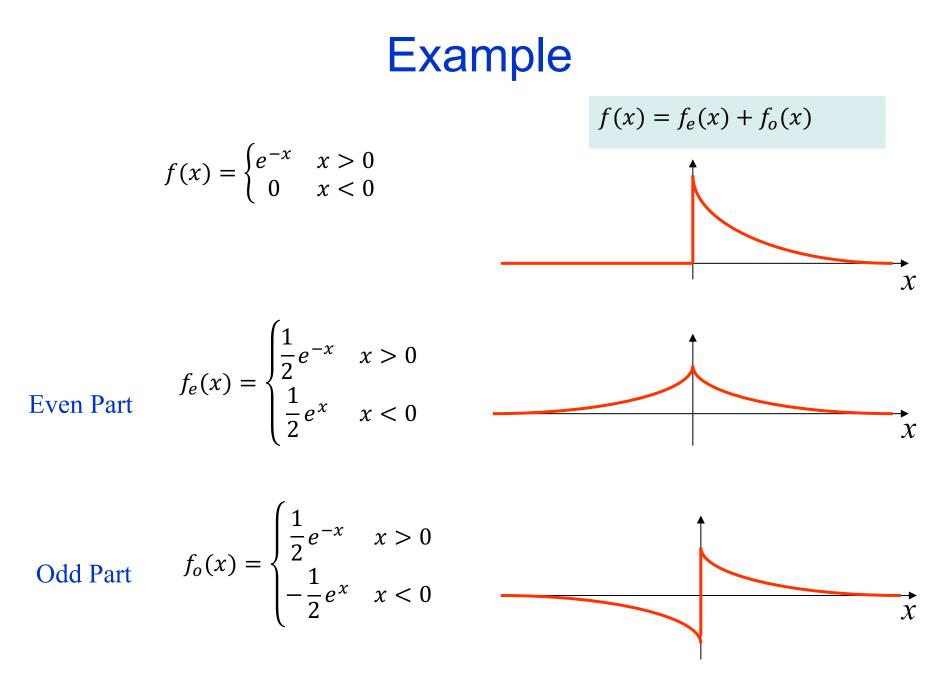
Any function $f(x) \neq 0$ can be expressed as the sum of an even function $f_e(x)$ and an odd function $f_o(x)$.

 $f(x) = f_e(x) + f_o(x)$

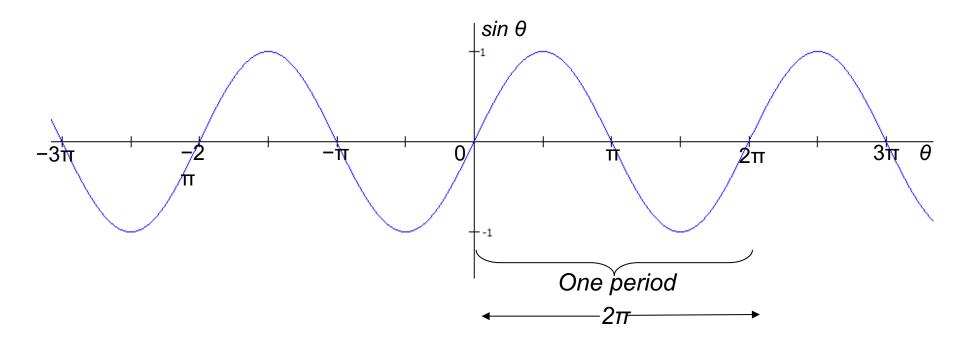
$$f_e(x) = \frac{1}{2} [f(x) + f(-x)]$$

$$f_o(x) = \frac{1}{2} [f(x) - f(-x)]$$

Even Part

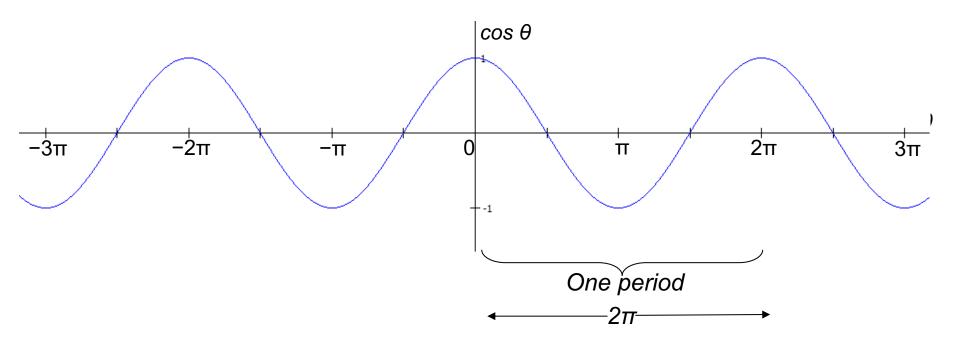


sine function



 $sin \theta$ is an **odd** function as it is symmetric wrt the origin. $sin(\theta) = -sin(-\theta)$

cos function

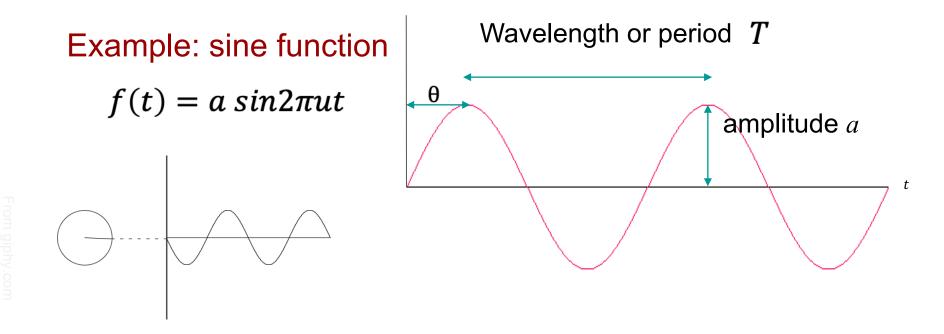


 $\cos \theta$ is an **even** function as it is symmetric wrt to the *y*-axis. $\cos(\theta) = \cos(-\theta)$

Signals as Functions

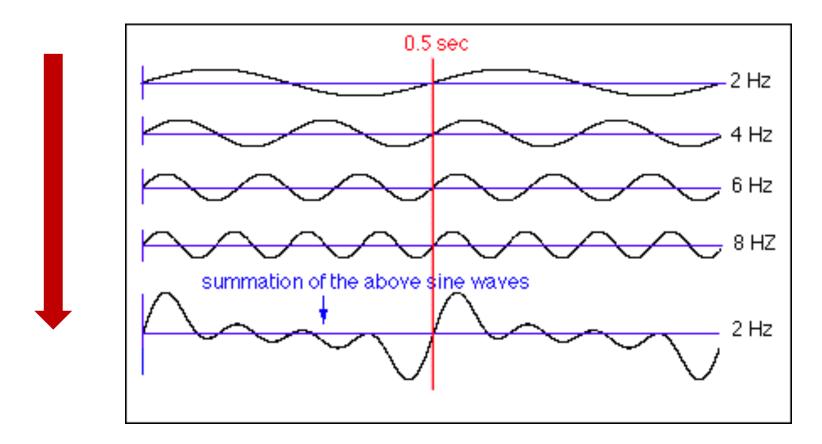
Frequency - allows us to characterise signals:

- Repeats over regular intervals with Frequency $u = \frac{1}{T}$ cycles/sec (Hz)
 - Amplitude a (peak value)
 - the Phase θ (shift in degrees)



Reminder: Linear Systems

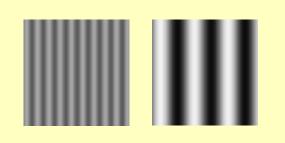
• For a linear system, output of the linear combination of many input signals is the same linear combination of the outputs \rightarrow superposition

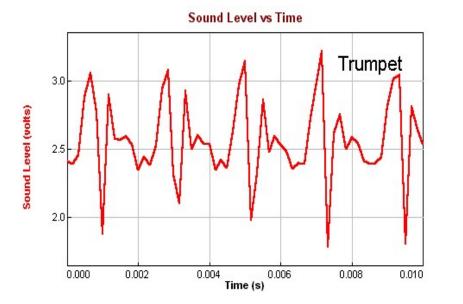


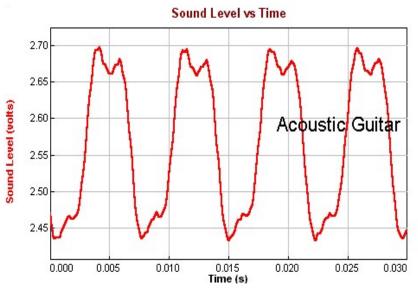
How do you interpret these musical instrument signals?

Characteristics of sound in audio signals:

- High pitch rapidly varying signal
- Low pitch slowly varying signal







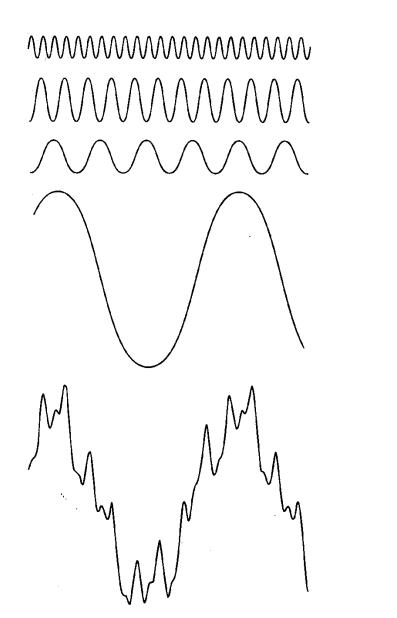
Frequency Analysis

Trigonometric Fourier Series: Any periodic function can be expressed as the sum of sines and/or cosines of different frequencies, each multiplied by a different coefficient. → Jean Baptiste Joseph Fourier (1822).

$$f(x) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right)$$

- A function with period *T* is represented by two infinite sequences of coefficients. *n* is the no. of cycles/period.
- The sines and cosines are the Basis Functions of this representation. a_n and b_n are the Fourier Coefficients.
- The sinusoids are harmonically related: each one's frequency is an integer multiple of the fundamental frequency of the input signal.

Expressing a periodic function as a sum of sinusoids



The Trigonometric Fourier Series once more...

A trigonometric *Fourier series* is an expansion of a periodic function f(x). This expansion is in terms of an infinite sum of sines and cosines.

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right)$$

cf. with slide 12 – when n=0 the sin term disappears and the cos term is 1, so we can rewrite the equation as above.

The Fourier series allows any arbitrary periodic function to be broken into a set of simple terms that can be solved individually, and then combined to obtain the solution to the original problem or an approximation to it.

 a_0 is often referred to as the DC term or the average of the signal.

Fourier Series solution

A *Fourier series* provides an equivalent representation of the function:

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right)$$

The coefficients are:

$$a_n = \frac{2}{T} \int_{-T/2}^{+T/2} f(x) \cos\left(\frac{2\pi nx}{T}\right) dx$$

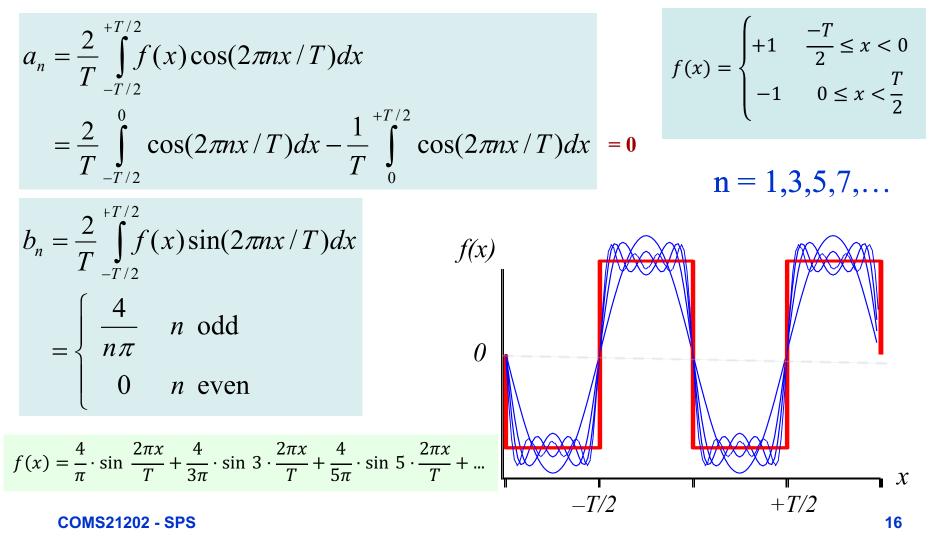
$$b_n = \frac{2}{T} \int_{-T/2}^{+T/2} f(x) \sin\left(\frac{2\pi nx}{T}\right) dx$$

$$b_n = \frac{2}{T} \int_{-T/2}^{+T/2} f(x) \sin\left(\frac{2\pi nx}{T}\right) dx$$

Example periodic function on $-T/2$, $+T/2$

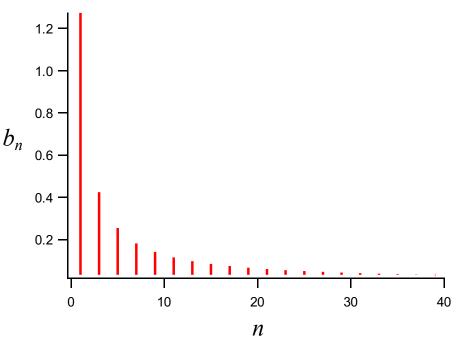
Fourier Series Example: Square Wave

• f(x) is a square wave



Fourier Series Example: Square Wave

- The set of *Fourier-space* coefficients b_n contain complete information about the function
- Although f(x) is periodic to infinity, b_n is negligible beyond a finite range
- Sometimes the Fourier representation is more convenient to use, or just view



Frequency Analysis

- The aim of processing a signal using Fourier analysis is to *manipulate the spectrum of a signal* rather than manipulating the signal itself.
- Example: simple compression
- Functions that are *not periodic* can also be expressed as the integral of sines and/or cosines weighted by a coefficient. In this case we have the Fourier transform.
- The Fourier transform provides a way of representing a signal in a different space i.e., in the frequency domain.

Fourier Transform Applications

- Applications wide ranging and ever present in modern life:
 - *Telecomms/Electronics/IT* cellular phones, digital cameras, satellites, etc.
 - Entertainment music, audio, multimedia devices
 - Industry X-ray spectrometry, Car ABS, chemical analysis, radar design
 - *Medical* PET, CAT, & MRI machines
 - Image and Speech analysis (voice activated "devices", biometry, ...)
 - and many other fields...

1D Fourier Transform

• The Fourier Transform of a single variable continuous function *f*(*x*) is:

$$F(u) = \int_{-\infty}^{\infty} f(x) \quad e^{-j2\pi u x} dx$$

 Conversely, given *F(u)*, we can obtain *f(x)* by means of the *inverse* Fourier Transform:

$$f(x) = \int_{-\infty}^{\infty} F(u) \quad e^{j2\pi ux} du$$

These two equations are also known as the Fourier Transform Pair. Note, they constitute a lossless representation of data.

1D Fourier Transform: Discrete Form

• The Fourier Transform of a discrete function of one variable, *f*(*x*), *x*=0,1,2...,*N*-1 is:

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{\frac{-j2\pi ux}{N}} \quad \text{for } u = 0, 1, 2, ..., N-1.$$

 Conversely, given *F(u)*, we can obtain *f(x)* by means of the *inverse* Fourier Transform:

$$f(x) = \sum_{u=0}^{N-1} F(u) e^{\frac{j2\pi ux}{N}} \quad \text{for } x = 0, 1, 2, \dots, N-1.$$

These two equations are also known as the Fourier Transform Pair. Note, they constitute a lossless representation of data.

1D Fourier Domain

• The concept of the frequency domain follows from Euler's Formula:

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

 Thus each term of the Fourier Transform is composed of the sum of *all* values of the function *f(x)* multiplied by sines and cosines of various frequencies:

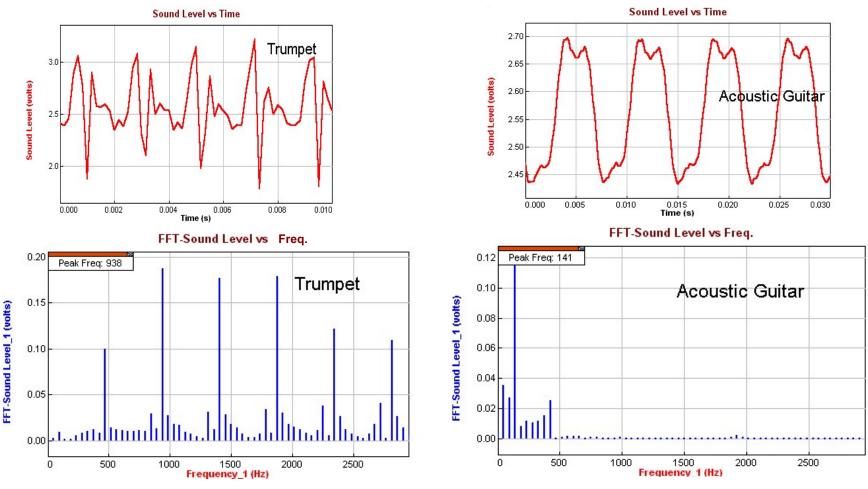
$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \left[\cos\left(\frac{2\pi ux}{N}\right) - j \sin\left(\frac{2\pi ux}{N}\right) \right]$$

for $u = 0, 1, 2, \dots, N-1$.

We have transformed from a time domain to a frequency domain representation.

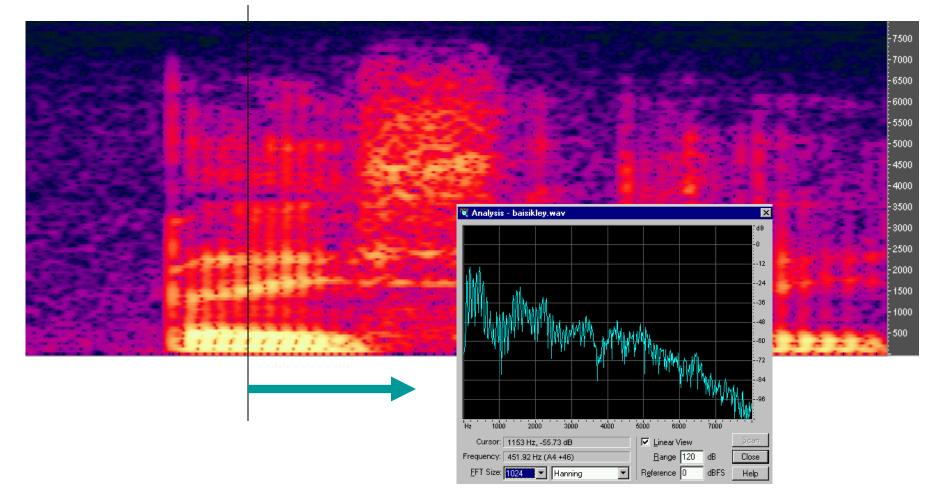
Example: Low and High Frequency

Characteristics of sound in audio signals.



Example: Acoustic Data Analysis

Spectrogram



1D Fourier Transform

- *F(u)* is a complex number & has real and imaginary parts:
- *Magnitude* or *spectrum* of the FT:

$$F(u) = R(u) + jI(u)$$

$$|F(u)| = \sqrt{R^2(u) + I^2(u)}$$

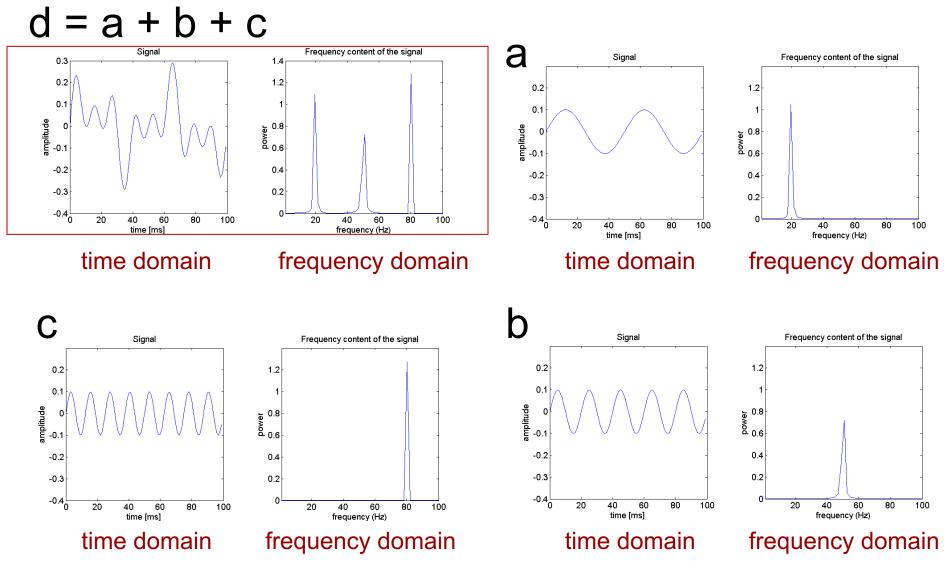
• Phase angle or phase spectrum:

$$\varphi(u) = \tan^{-1} \frac{I(u)}{R(u)}$$

• Expressing F(u) in polar coordinates:

$$F(u) = |F(u)|e^{j\varphi(u)}$$

Simple 1D example



Frequency Spectrum

- Distribution of $|F(u)| \rightarrow$ frequency spectrum of signal.
- Slowly changing signals → spectrum concentrated around low frequencies.
- Rapidly changing signals → spectrum concentrated around high frequencies.
- Hence low and high frequency signals.
- Also bandlimited signals → frequency content confined within some frequency band.

Very Simple Application example

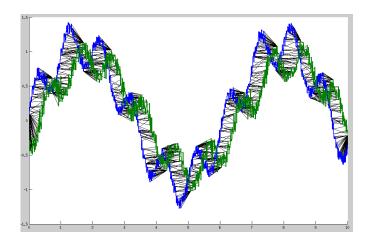
- Automatic speech recognition between two speech utterances *x*(*n*) and *y*(*n*).
- Naïve approach:

$$E = \sum_{\forall n} (x(n) - y(n))^2$$

Problems with this approach? x(n) = Ky(n), yet $E \neq 0$ (*K* being a scaling parameter)

x(n) = y(n-m), yet $E \neq 0$ (*m* causing a delay shift)

One solution could be Dynamic Time Warping (recall from earlier lecture)



Frequency domain features

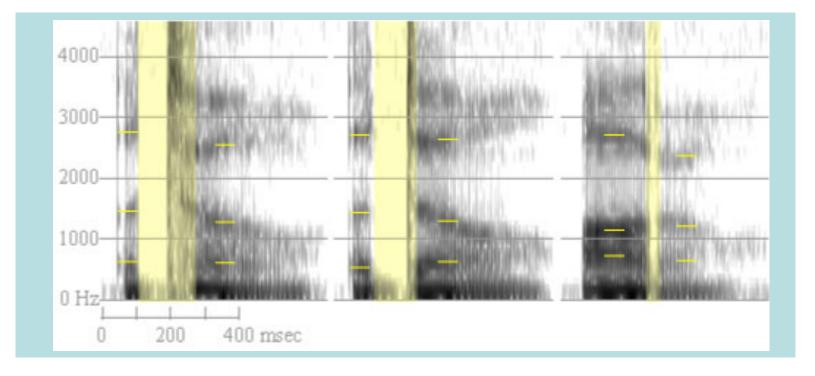
• Take the Fourier transform of both utterances to get X(u) and Y(u).

• Then consider the Euclidean distance between their magnitude spectrums: |X(u)| and |Y(u)|:

$$d_E = \sum_{\forall u} (|X(u)| - |Y(u)|)^2$$

Frequency domain analysis

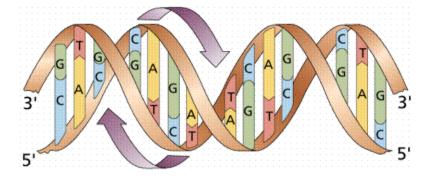
• Still a difficult task even in the frequency domain.



a tot a dot otto

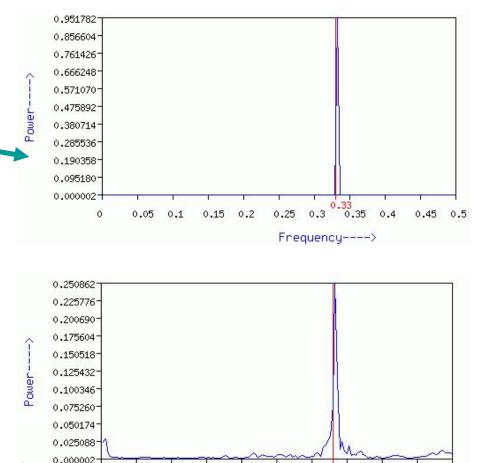
DNA sequence FT example

- The analysis of correlations in DNA sequences is used to identify protein coding genes in genomic DNA.
- Locating and characterizing repeats and periodic clusters provides certain information about the structural and functional characteristics of the molecule.
- DNA sequences are represented by letters, A, C, G or T, and - .
- e.g. ACAATG-GCCATAAT-ATGTGAAC--GCTCA...



DNA sequence FT example

- Consider the periodic sequence A--A--A--A--.... where blanks can be filled randomly by A, C, G or T. This shows a periodicity of 3.
- The spectral density of such a sequence is significantly non-zero only at one frequency (0.33) which corresponds to the perfect periodicity of base A (1/0.333=3.0).
- Destroy the perfect repetition by randomly replacing the A's with all letters...



0.15 0.2

0.25

0.3

Frequencu--->

0.05 0.1

Ó

0.45

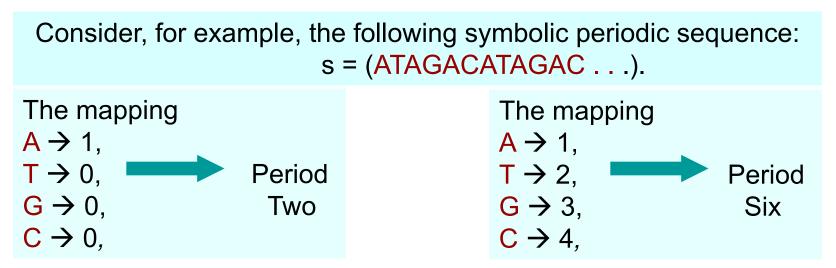
0.5

.33 0.35

0.4

Let's practice: DNA sequence analysis

- The computation of Fourier and other linear transforms of *symbolic data* is a big problem.
- The simplest solution is to map each symbol to a number. The difficulty with this approach is the dependence on the particular labeling adopted.



• This clearly shows that some of the relevant harmonic structure can be exposed by the symbolic-to-numeric labelling.